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ABSTRACT

For any nxn (0,1) matrix A , a correspondence is
established between A and a certain bigraph G . Equiv-
alences between various concepts pertaining to A and G ,
respectively, are demonstrated. It is shown that if' A is
fully indecomposable, then G 1is 2-connected. A method is
developed for reducing a bigraph 6 of a nearly decomposable
matrix to a strictly smaller bigraph G6' , which is also
associated with a nearly decomposabtle matrix A' . This
result is used to completely characterize the fully indecom-
posable matrices in terms of their bigréphs and leads to a
lower-bound estimate for the permanent function on this class
of matrices. Finally, the characterization theorem is shown
to be relevant to the problems of (1) finding an upper-bound
estimate for the permanent and (2) of determining the structure

of the class of nearly decomposable matrices. Some partial

results along these lines are given.







- I.. INTRODUCTION

1. Definitions and Preliminaries

A nonneaative matrix is one whose entries are non-
neqative real numbers. Essentially, this dissertation is an
“investigation of combinatorial pronerties enjoved by certain
classes of nonnegative matrices. The expression "combina-

torial properties,” as héed here, means roughly, those prop-
erties which pertain to the distribution of'ieros amona the
entries of A . A (0,1) matrix is one whose ehtries are
either 0 or 1 . 0One can readily see thét the éombinator1a1
properties of an mxn nonnegative matrix A are comn]éteJy
represented by an mxn (0,1) matrix A' whose zeros correspond
to the zeros of A énd whose ones occur in the same Tocations
as the positive entr?es:of A .7 In the light of this obser-
vation the theorems that fo11ow are stated in terms of (0,1)
matrices when it is part1cu1ar1v conven1ent to do so. MWe
shou]d keep in m1nd however, that manv of the resultsu

extend 1mmed1ate1y to nonneqat1ve matr1ces This section

c]oses w1th a few def1n1t1ons

A permutation matrix is an nxn (0,1) matrix having
prebfse]y hhe 1 fn éach row énd column. Observe fhat if P
is a permutation matrix and A is an arbitrary matrix,
multiplication of A on the 1eft bv P "results in.a matrix

A' , which is identical to- A -excent that the ordering of




the rows of A' is a permutation of the row orderina of A
Multiplication on the right by P produces a similar result

with respect to the columns of A

We say that an nxm matrix A is p-equivalent to an
nxm matrix B if there is an nxn permutation matrix P and
an mxm permutation matrix O such that A = PBO . In the

D_l PT

case where n =-m and 0 = = we say that A s

p-similar to B

Definition 1.1: An nxn matrix A 1is said to be

partly decomposable if it dis p-equivalent to a matrix of

the form
Cll Cl2
C =
C21 sz
where 612 is an sxt zero submatrix with s + t = n . If

A~ is not partly decomposable, A is said to be fully <nde-
composable. Similarly, A 1is said to be reducible or
irreducible when A is or is not p-similar to a matrix in

the form of C

The svmbol FI alwayvs denotes "fully indecomposable"

in the sequel.

An nxn nonnegative matrix A s said to be doubly

stochastic if each of its row sums and column sums enuals one.




If A 1is an nxn complex matrix, we define the permanent

of A +to be the complex valued function
n

per 3= 5 TT s

oes  i=1
n

Chapter II, section 1 provides definitions of the
digraph (directed graph) and the bigraph (bipartite graph)

corresponding to a nonnegative matrix.

2. Historical Background

Among the most important early investigations involving
combinatorial properties of nonnegative matrices was |
Frobenius' beautiful work [6], which extended the results of
Perron [13] to irreducible nonnegative matrices. The Perron-
Frobenius theory 1inks combinatorial properties of nonnegative
matrices to their spectral properties in an especially fruitful
way. As a result, the concept of irreducibility has found
applications in such diverse areas as the theory of stochastic
matrices, numerical analysis, and partial differential equa-

tions. For examples, see [2] and [19].

Apparently, the more general concept of an FI matrix did
not attract attention until more recently. In 1959, Marcus
and Newman []O] made the significant discovery that if Qn is

the set of nxn doubly stochastic matrices, and if AeQn and




per A = min (per S) , then A s FI. (This is a partial
sefl
n

result along the lines of the well-known Van der Waerden
conjecture concerning the minimum of the permanent function

on 0 .)

n

In 1965, Perfect and Mirsky [12] studied FI matrices
and discovered several properties relating them to doubly
stochastic matrices. Sinkhorn and Knonp [16], and Brualdi.
Parter, and Schneider [2], independently discovered a funda-
mental relationship between FI and doubly stochastic matrices
using totally different techniques. In their paper, Brualdi
et al. showed how FI matrices are related to the Perron-

Frobenius theory.

In two paners which apneared in 1969, Sinkhorn and
Knorp [15] and Sinkhorn [14] introduced the notion of a
nearly decomposable matrix, and presented a fundamental
theorem regarding the structure of these matrices. With this
result a powerful new tool became available for the study of
FI matrices. For convenience, we present their discoveries

below.

Definition 2.1: Let A be an FI matrix. If a. is

ij

a positive entry of A , then aiﬁ is said to be removable
if the matrix A' , derived from A bv reolacina aij with
a zero, is FI. If an FI matrix A has no removahle entries,

then A is said to be nearly decomposable.




In the sequel, the abbreviation ¥D always denotes

"nearly decomposab]é”.

Theorem 2.1 (Sinkhorn and Knopbp): Let A be a non-

negative nxn ND (0,1) matrix with n > 1 . Then permutation
matrices P and Q and an integer s > 1 exist such that
PAQ corresponds to the matrix in fiaure 2.7, where each Ei

has exactly one entry equal to 1 , and each Ai is ND.

With the aid of. this theorem, Sinkhorn and Knonn [15]
showed that if A is an FI matrix and if all of the nonzero
summands of the function per A are identical, there is a unique
positive matrix B of rank one such that bij = aij when-
ever aij > 0 . SUbseauent]y, Sinkhorn used Theorem 2.1 to
settle, in the affirmative, a conjecture of Marshall Hall con-
cerning the behavior of the function ber A on the set of nxn
(0,1) matrices having precisely three ones in each column and
each row. In 1969, Minc [11] used Theorem 2.1 to obtain a
very good lower-bound estimate for the permanent of FI (0,1)

matrices.

(e
®

m

I

Figure 2.1




After ND matrices were introduced and their importance
was demonstrated, 1t>was natural to investigate the pronerties
of nearly reducible matrices. (If we replace the symbol "FI"
bv the word "irreducible" in Definition 2.1, we have the
definition of a nearly reducible matrix.) Sinkhorn and
Hedrick [17] established many of the important pronerties of

these matrices.

In 1969, Hartfiel [9] studied nearly reducible matrices
by examining associated directed agranhs. This led to the

following canonical form for a nearlyv reducible matrix.

Theorem 2.2 (Hartfiel): If A is an nxn nearly

reducible (0,1) matrix with n > 1, then A is p-similar

to the matrix of figure 2.1, where s > 1 , A.l is the 1x1

zero matrix for 1 = 1,2,¢¢°¢,8-1 , AS is an n_xn, nearly

reduciblie submatrix, El is the 1x1 matrix 1 for

i=2,3,+°,5-1 , and ¢E and E are I1xn and n x1 sub-
1 s S S

matrices, respectively, each having precisely one nonzero

entry.

Using a theorem discovered independently by Hartfiel
and Hedrick which relates ND matrices to nearly reducible

matrices, Hartfiel derived the followina remarkable result.




Theorem 2.3 {(Hartfiel): If A ds an nxn ND (0,1)

matrix with n > 1 , then A 1is p-equivalent to the matrix
of figure 2.1, where s > 1 | Ai and Ej are the 1x1 matrix
1 for i = 1l,°<2,5-1 and J = 2,¢++,5=-1 , A is an n_xn

3 S )
ND matrix, and E and E are ?xns and nSX1 submatrices,

1 S
resnectively, each havinag preciselv one nonzero entry.

Theorem 2.3 is a considerable sharpenina of Theorem 2.1,
and we would like to acknowledge the helpful role it plaved

during the investigations reported in this dissertation.

In May 1969, this author indepnendently discovered the
same lower bound as Minc, usina Theorem 2.3. Drs. Sinkhorn
and Hartfiel, and Mr. Crosby, of the University of Houston,
have also obtained this result indevnendentlv. A new proof
of Minc's Tower-bound estimate anpears in Chapter III of this

paper, using results develoned herein.

3. Discussion of Procedures and Goals

The remarkable results obtained by Hartfiel demonstrated
the usefulness of studying digraphs to obtain information
concerning irreducible matrices. The power of this technique

stems from two sources.




First, the digranh of an nxn (0,1) matrix A renresents
the entire p-simiiarity class of A (see ch. II, sec. 3,
p. 23). Certain syvmmetries df the similaritv class are
apparent from observing the granh, but cannot readily be
recognized by inspecting a particular matrix renresentative

of that class.

Second, the classic theorem (Theorem II1.3.1), which
characterizes irreducibility of a matrix in terms of the
strong connectivity of its digraph, is verv useful in studying

the combinatorial pronerties of nearlv reducible matrices.

In view of the preceding observations, this author
believes that the bigraph is a natural object to studv in
order to obtain information about the combinatorial properties
of an FI matrix. Bigraphs are chosen in this settina because
the bigraph of a (0,1) matrix A vrepresents the entire

p-equivalence class of A (ch. IIl, sec. 3, n. 22),

As far as this author knew, no useful theorem existed
which characterized FI matrices in terms of their biaranhs
in a sense analagous to Theorem II.3.1. With Theorem II1.4.14
this characterization is accomplished. Further, to demonstrate
the effectiveness of our method, it was felt that we should
be able to obtain a result similar in usefulness to Hartfiel's
Theorem for ND matrices, using solelv the intrinsic properties

of FI matrices and their assnciated bigraphs. UYe achieved




this result in Theorem I11.4.15. The remaining goals we
sought to accomplish were a characterization of ND matrices
or their biaraphs in terms of some easilv observable param-
eters, and the discovery of some aood unper- and lower-bound
estimates for the permanent of an nxn (0,1) FI matrix (in

narticular, ND matrix).

The extent of success of this Tatter portion of our
proaram i1s revealed in Chapter III, and is discussed in the

summary .

We close this chanter with a short section describing

some notation and conventions for internal referencina.

4, Notation and Conventions

The following conventions have been adopted in this
dissertation for referencing theorems, corollaries, lemmas,
and definitions. If the theorem referenced is stated in the
same chanter as the reference, the reference is in the form

"Theorem 1i.] This refers to the thenrem numbered i.3i which

apnears in section i, where i and j are Arahic numerals.

If the theorem referenced is stated in a different
chanter than the reference, the reference reads "Theorenm
c.i.j", where ¢ 1is the Roman numeral correspondina to the
chapter in which the theorem apnears, and i and i are as

in the previous case.
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The set theoretic notation used corresponds to the
notation in [7] with the exception that if S is a finite

set, |S| denotes the number of elements in S

The following special notation is frequently used.
Suppose aij is an entry of an mxn matrix A . Then the
matrix Eij corresponding to the number aij is the mxn
matrix having the entry 1 in the i,jth position and O
elsewhere. When the notation Eij is used with an entry
aij of an mxn (0,1) matrix A 1in the sequel, it is under-
stood without confusion that Eij is the mxn (0,1) matrix

corresponding to aiﬁ
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IT. THE STRUCTURE OF BIGRAPHS CORRESPONDING
TO FULLY TNDECOMPOSABLE MATRICES

1. Definitions and Preliminary Material from Graph

Theory

Since comprehensive treatises on graph theory have
become available only recently, and since the notation and
definitions vary widely among different authors, a complete
1ist is included of the graph-theoretic definitions in this

dissertation.

Definition 1.1: A graph G consists of a nonempty set

V(G) whose elements are called vertices of G , together with
a set E(G) consisting of unordered pairs of vertices, with the
condition that if v is in V(G), then {v,v} is not in E(G).
The elements of E(G) are called the edges of G . It is
customary to visualize or to illustrate a graph by representing
its vertices as points and its edges by lines connecting the
vertices (see fig. 1.1). For notational economy, we will

write uv to denote an edge {u,v}. The symbol G will always

represent a aranph.

The definition of a graph which we have adopted is a
restricted one in a sense. Some authors define E(5) differ-
ently, to admit edges whose end points coincide (Zoops), and
to allow a pair of vertices to be connected by more than one

edge (multiple edges).
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Figure 1.1

If uv is an’edge of G , then u and v are said to
be its end points. In this case, the vertices u and v
are said to be adjacent. The edge uv and the vertex u (or
the vertex v ) are incident. We say that two edges e and
f of G are adjacent if they are both incident to a

vertex v

The valence of a vertex v in G , denoted val(v),
is a nonnegative integer representing the number of edges of
G which are incident to v . Vertices with one, two, or
three incident edges are called monovalent, divalent, and
trivalent, respectively. A vertex which is not divalent is

called a node.
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The notion of a subgraph of G is now introduced,
and some important special subgraphs and graphs related to

G are defined.

A subgraph of G is a graph H such that V(H) < V(G)
and E(H) C E(G) . If V(H) # V(G) or E(H) # E(G) , H

is said to be a proper subgraph of G

If RCE(G) , the subgraph induced by R is the
graph [R] whose edge set is R , and whose vertex set con-
sists of every member of V(G) which is an end point of an
edge in R . Similarly, if S CV(G) , the subgraph induced
by S is the graph [S] whose vertex set is S , and whose

edges are all members of E(G) with both end points in S
H is a spanning subgranh of G if V(H) = V(G)

If S CV(G) , then G' = ¢ - 5 is the subgraph of
G dinduced by the vertices V(G)-S. If S consists of a

single vertex v , we simply write G' = G - v

If R CE(G) , then G' =¢ - RrR 1is the subgraph of
G whose vertex set is V(G) and whose edge set is E(G)-R.

If R consists of a single edge e , we write G' = G - e

ITf G and D are graphs, then the graph G = ¢ UD
is the graph with edge set E(G) U E(D) and vertex set
V(G) U V(D)
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The important concept of a path in G is now

introduced.

Suppose v, (i = 0,1,¢¢<,n) are in V(6) and

ej (j = 1,2¢+,n) are in E(G). Let P(n) = L A L

be a sequence whose terms are alternately vertices and edges
of G , and where e, is incident to both Vi, and vy

for i = 1,e++«,n . P(n) is called a path in G with end
points Vo and Voo The vertices Vistee,v o, oare called

the interior vertices of P(n). Since the graph G does not
have multiple edges, P(n) is completely determined bv its
subsequence of vertices, and we will denote P(n) by vovl---vn.
The positive integer n , corresponding to the number of
edges contained in P(n) is called the Zength of the path P(n).

A path Vortevy is said to be a si<mple path if 1 # 3 implies

that v, # vy for 0 =49, jJ £n . A path is closed if
Vo =V, - A cycle is a closed path which is simple excent
that Vo TV,

There are several important concepts which are defined
in terms of a path: A graph G 1is said to be connected if
every pair of vertices u and v in G are the end points
of some path in G . In a connected graph G , the distance
between any two vertices v and w of G [which we denote
by d(u,v)] is defined to be the length of the shortest path
in G having u and v as end points. If H s a subgraph

of G and u and v are in V(H), the distance in H
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between u and v [denoted dH(u,v)] is the length of the
shortest path 2w # with u and v as end points. Note

that d_(u,v) may not be the same as dG(u,v) when u and v

are 1in V(H). In general, dG(u,v) < dH(u,v) . Again, suppose
H is a subgraph of G . A path P of G 1is said to avoid
H if none of the vertices of P is in V(H). It follows that
if P avoids H , none of the edges of P dis in E(H). If
H is a subgraph of G , H is a maximal connected subgraph

if H s connected and is not properly contained in any other

connected subgraph of G

If G 1is a graph, a maximal connected subgraph is
called a component of G . The components clearly form a

unique (disjoint) partition of G

The following concepts are of special importance in

this paper, and will be used frequently in the sequel.

A vertex v of a connected graph G 1is said to be an
articulation point i1f the graph G-v has two or more components;

v is said to separate G

Definition 1.2: A connected graph G 1is said to be

2-connected if it does not contain an articulation ponit.

A graph G is said to be regular if every vertex of G
has the same valence. In this case, the valence of G s
defined to be the valence of any vertex and is denoted by

val(G).
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Definition 1.3: A k-factor of G 1is a reqular,

spanning subgraph F with val(F) = k

0f particular interest in this dissertation are the
1-factors of a graph G . Theorem 1.1 is a characterization
of T-factors which will be useful in the sequel, and is an
immediate consequence of the following definitionrs: A subset
R of E(G) is called independent if every vertex of G is
incident to at most one edge in R . A subset R of E(G) is
said to cover a subset S of V(G) if every vertex of S s

incident to at least one edge in R

Theorem 1.1: The subgraph F 1is a 1-factor of G if

and only if E(F) is an independent set of edges which covers

V(G).

In the literature of graph theory, 1-factors are some-

times referred to as "perfect matchings".

If F' 1is a set of independent edges of G , and if
there is a set of edges S C E(G) - F' such that
F=[F']JUI[S] is a l1-factor of G , we call F an

extension of F' to a l-factor of G

A digraph, or directed graph, is a graph as defined in
Definition 1.1, except that an edge is an ordered pair of

vertices (u,v), and it is admissible to have an edge (v,v).
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Like graphs, digraphs are often displayed geometrically as a
network of points joined bv lines. In this case, however,
each line is given an arrow to indicate the orientation of

the edge it represents (fig. 1.2).

Figure 1.2

Note that in a digraph, an edge uv is distinct from

the edge vu.

We now define several special graphs for which it is

convenient to have a standard notation and terminology.

An edge graph i1s a graph consistina of a single edge
together with its end points. A vertex graph is a graph
consisting of a sinale vertex with no edqges. The complete
n-graph Kn is the araph with n vertices and an edge

joining every pair of vertices.
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We now define a bigraph, an object of central interest

in this dissertation.

Definition 1.4: A bigraph, or bipartite graph, is a

graph G whose vertex set can be written as the disjoint
partition V(G) = SUT , such that each edge of G has one

end point in S and the other in T

G is called an (m,n) bigraph if |S| = m and |T]| = n
Bigraphs are sometimes called bicolorable graphs, and it is
often illuminating and economical to refer to the vertices in
S as "green" and the vertices in T as "blue". We will not
hesitate to use this convention whenever it will clarify or

shorten our exposition.

Observe that the edge set of the bigranph G can be
considered as a subset of SxT. This practice is also fre-
quently useful in discussing bigraphs [4], and is used at

least once in what follows.

Notice that if VoVio v, is a path in a bigraph G ,

the vertices are alternately blue and green.

The complete bigraph Km N is the graph with m
green vertices and n blue vertices such that each green

vertex is joined by an edge to every blue vertex.
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A tree is 8 connected graph containing no cycles. More
generally, a forest is a graph having no cycles. Hence, the

connected companents of a forest are trees.

We end this section with some well-known graph-

theoretical results which are needed later.

Theorem 1.2 (Kbnig): A graph G 1is a bigraph if and

only if G does not contain a cycle of odd length. (For
a proof see [18], p. 68.)

Theorem 1.3 (Whitney): Let G be a 2-connected

graph. Suppose K 1is a 2-connected proper subgraph of G
containing at least one edge. Then we can write G as
HUL , where H fs a 2~connected proper subgraph of G
containing K , and L 1is a simple path in G that avoids
H except for its distinct end points which are in V(H).

(For a proof see [18], p. 85.)

Theorem 1.4: Every tree has at least two monovalent

vertices. (For a proof see [18], p. 19.)

2. Nonnegative Matrices — Definitions and

Preliminaries

The following definitions and Theorems 2.1, 2.2, and

2.3 are essentially as they appear in [15].
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A diagonal of an nxn square matrix A is a collection
of n entries of A , precisely one of which appears in
each row and column of A . If ceSn (the symmetyric groun of

dearee n ), the diagonal ©,a is said

61y %202y no (n)

to correspend to o . It is clear that this relation estab-
Tishes a 1-to-1 correspondence between the permutations in Sn
and the diagonals of A . A diagonal product of A 1is the
product of the entries in a diagonal of A . We should observe
here that the diagonal products of A are precisely the terms

of the permanent function defined in the introduction.

A diagonal d of A 1is said to be positive if every

entry of A in d 1is positive.

A nonnegative mxn matrix A is chainable if for every

pair of positive entries a, . and a, . there is a
171 k9 k
sequence of positive entries a, L ostttsay where, for
171 kIk
r = 1,ec¢,k-1 , either io=d ,, 0or 3o =3 ., - This
sequence is called a chain with end points a, | and a, |
t171 TxIx

Recall that an nxn nonnegative matrix A 1is said to

be doubly stochastic if everv row sum and column sum equals 1.

A nonnegative square matrix A has doubly stochastic
pattern 1f there is a doubly stochastic matrix B such that

a,. =0 1if and only if b.,. =0
ij 13
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A nonnegative matrix A 1is said to have support if

every positive entry 1ies on a positive diagonal.

Theorem 2.1: If A dis an nxn FI matrix, then any
(n=1)x{n-1) submatrix contains a positive dﬁagona1 of (n-1)

entries.

Theorem 2.2: An nxn nonnegative matrix A has doubly

stochastic pattern if and only if A has sunport.

Theorem 2.3: An nxn nonnegative matrix A is FI if

and only if A 1is chainable and has support.

The following theorems are immediate conseauences of

the definitions.

Theorem 2.4: An nxn nonnegative matrix A dis FI if

and only if A does not contain an sxt zero submatrix with

s +t =n

Theorem 2.5: If A s an FI matrix, every row and

every column contains at least two positive entries.

3. Correspondences Between Matrices and Granhs

In this section the fundamental relationship between a
nonnegative matrix and a biaranh is defined. After the basic
definition, a number of theorems are listed which reveal a
useful correspondence between some analagous concents 1in
graph theory and matrix theorv. Manv of these theorems

follow directly from preceding definitions.
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Definition 3.1: Let A be an mxn (0,1) matrix. We

associate a bigraph G with A in the following manner:
Let V(G) = S UT where S 1is a set of m vertices

{Vl,V -=',vm}, and T 1is a set of n vertices

25

{w sw,,o=+,w }. We let the vertex v, correspond to the

2
ith row of A for i = 1,-¢¢,m , and wj correspond to the

jth column of A for j = 1l,*¢+,n . For each i and J ,
where 1 = 1,¢ce,m and j = 1,°c<,n , there is an edge
viwj in E(G) if and only if the entry a, . of A 1is positive.

G is called the bigraph corresponding to A , or simply the

bigraph of A . Me call A a matrix representative of G

The last terminology becomes more meaningful when
we observe that the graph G can be made to correspond to any
(0,1) matrix in the p-equivalence class of A . This follows
from the fact that permutations of rows and columns of A
correspond to a renumbering of the vertices in S and T ,
respectively. Thus, A 1is but one repnresentative of the
p-equivalence class corresponding to G . These facts and
the invariance of manv of the combinatorial properties of
matrices under p-equivalence transformations, make biaranhs
a powerful tool in studying these proprerties. These comments

will become clearer as the theory unfolds.
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Definition 3.2: Let A be an nxn (0,1) matrix. We
associate a digraph G with A in the following manner:
Let V(G) = {v

Y °°,vn} . For any pair i and j where

SEAPEE
1 =i and j £n , there is an edge vivj'in E(G) if and only
if the entry aij of A is positive. We call G <the digraph

of A

Notice that the digraph G of an nxn (0,1) matrix A
represents the entire p-similarity class of A in a manner
analagous to the representation of a p-equivalence class by

“a single bigraph.

If uv is an edge of a digraph, u 1is cailed the
initial vertex and v the terminal vertex of uv. By a
directed path P in a digraph G , we mean a sequence
Voo aVys®t® sl sV whose entries are alternately vertices
and edges of 6 such that v, ., 1is the initial vertex and
v, the terminal vertex of e, for i = 1,°*<,n . The
vertices Vo and v, oare called the initial vertex and the
terminal vertex, respective]y, of the directed path p

A digraph G is said to be strongly connected if for
every pair u and v of vertices of G , there is a
directed path P with initial vertex wu and terminal vertex
v , and there is a directed path P' with initial vertex

v and terminal vertex u
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The following well-known result gives a complete charac-
terization of irreducible matrices in terms of their digraphs,
and is an indispensable tool in the study of irreducible and

nearly reducible matrices. (See [9], and [1], p. 123.)

Theorem 3.1: An nxn (0,1) matrix A is irreducible if

and only if its digraph G 1is strongly connected.

This result with many of its applications appears in

[19].

We now note some interesting correspondences between
analagous concepts pertaining to nonnegative matrices and

their bigraphs.

From the above definitions we see that rows and columns
of A correspond to green and blue vertices, respectively,
of its bigraph G , and that the positive entries of A

correspond to the edges of G

Theorem 3.2: Let G be the biaranh of an nxn non-

negative matrix A . If G 1is connected, then A is chain-

able. If A dis FI, then G 1is connected.

Proof: Suppose G 1is connected, and Tet a, 5 and
—_— 1-1
a; . be any two positive entries in A . Then v, w, and
kK i,73,
v, w, are edges of G . There is a path




W. Viw' 35109
J1 to 2

W, v, Jjoining the vertices w, and v

Te-1 *x J1 k

by the connectedness of G . Then a, . a. . ,
: i.3., 1.3

171 "2-1

which corresponds to the sequence of adjacent edges

V, W. W PR Vi oaV WL is the necessary chain

3, 3, Tp-1 T g I
satisfying the chainability condition for A .

Conversely, suppose A is FI. By Theorem 2.5, every
row and every column of A <contains at least two positive
entries. This is equivalent to saying that every vertex of
G has at least two incident edges. If v, and w, are

t1 Ik
any two vertices in G , there is an edge vy wj incident
171

to V. and an edge v, w, incident to w, . These two
1 Tk Tk Ik
edges correspond to positive entries a, . and a, . of
i.3 i3
1 k
A, and there is a chain a, L osctetsaL with end points
171 kK
a, . and a, ., . Clearly, extraneous entries can be
171 'S

eliminated from the chain to yield a chain with the property

that if o= i, then LI # LIS and Jpp1 = 300 o
and if Jr - Jr+l > then Jr+l 7 Jr+2 and 1r+1 B 1r+2 ’
for r = 1,¢¢¢,k=2 . But such a chain corresponds to a path
in G with end points v, and w, ; hence, G s

1 Ik

connected.
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Theorem 3.3: Let G be the biaranh of an nxn non-

negative matrix A . Then the entries of any positive
diagonal of A <correspond to the edoes of a 1-factor of G
and the edges of anyv 1-factor of G <correspond to the entries

of a positive diagonal of A

Proof: Let F be a set of edges of £ and d the
corresponding positive entries of A . Then [F] is a 1-factor
of G if and only if F 1is a spanning independent set, if
and only if each vertex of G appears exactly once as an end
point of some edge in F , 1if and only if each row and column
contains exactly one entry of d , if and only if d -is

a (positive) diagonal.

Corollary 3.4: If A 1is an nxn (0,1) matrix and G dts

bigraph, then the number of distinct 1-factors of & = per A

Theorem 3.5: If A 1is a nonnegative matrix and G its

bigraph, then A has doubly stochastic pattern if and only if

every edge of G 1s contained in a 1-factor of G

Proof: Applv Theorems 2.2 and 3.3.

When every edce of a graph G 1is contained in a 1-factor

of G , we say that G has support.
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Suppose G is an (m,n) bigraph with V(G) = S UT
Suppose further that U and V are nonempty subsets of S
and T , vrespectively. If, in addition, the subaraph induced
bv UuU V has no edges (equivalently (UxV) ME(G) = ), we
say that U UV 1is an independent subset of V(G). MNote that
this definition ensures that an independent subset of V(G)

always contains both green and blue vertices.

Theorem 3.6: Let A be an nxn nonnegative matrix with

bigraph G . Then A has an sxt zero submatrix if and only
if G has an independent set of edges U UV with |[U] = s

and |V] =t
Proof: This follows from the definitions.

Corollary 3.7: An nxn nonnegative matrix A dis FI if

and only if its bigraph G does not have an independent set

of edges U UV with |U] = s and |V]| =t such that

s+t =mn
Proof: Apply Theorem 2.4.

4. Main Results on Bigraphs of Fully Indecomposable

Matrices

In this section we develop the most significant results
in this dissertation. The most important of these are

Theorems 4.9, 4.10, and 4.14.
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Theorems 4.9 and 4.10 constitute a new tool which is
particularly applicable to inductive-type arquments involving
ND matrices. It is hoped that furtheyr applications of this

result will be obtained in the future.

Theorem 4.14 characterizes FI matrices in terms of the
structure of their bigraphs. Like the analagous well-known
result which characterizes irreducible matrices in terms of
the strong connectivity of their directed graphs (Theorem 3.1),
it is a useful tool in determining when a matrix is FI.
Furthermore, its power in revealing important properties of
FI matrices is demonstrated by the fact that it yie?ds'
Hartfiel's theorem, and by the applications which follow in

Chapter III.

We begin our development by determining the structure
of 2-connected bigraphs corresponding to square matrices via
a classical theorem of Hassler Whitney (Theorem 1.3). The
structure of bigraphs of FI matrices (Theorem 4.14 below) is
developed independently of this material, but the consequences
of Whitney's theorem illuminated much of this author's
research, and we feel that it provides the proper setting for

the presentation of our results.

Theorem 4,1: Let A be an nxn FI matrix. Then the

bigraph G of A 1is 2-connected.
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Proof: Since the theorem is obvious for n =1 , we

v

can assume n 2 . G 1is an (n,n) bigraph with V(G6) = S UT
- By Corollary 3.7, if A 1is FI, then there do not exist non-
empty subsets U < S and V CT with JU| + |V] = n and

(UxV) M E(G) = 0

Our method of proving the theorem is to assume that A

is FI, that G 1is not 2-connected, and show that this leads

to a contradiction.

Since G 1is not 2-connected, there is an articulation
point x in V(G), so that G-x has k connected components
(k > 1). Let P be the vertex set of any single component
of G-x and Q the union of the vertex sets of the remaining
components. Thus, P and Q are nonempty and
[P UQ] =2n -1, since |V(G)] = 2n . We observe that
(SNP)YU(SNQ)UI(TNP)U(TNQ) is a disjoint partition

of V(G)-x. Hence

(1) [(SOP) + ](sn)| + [(TP) + |(TN0)]

2n - 1

Let U=SMP and V=TNQ . Likewise, let
U''=8SNQ and V' =T NP . We now show that
(UxV) ME(G) = (U'xV') N E(G) = ¢ . For, suppose

(UxV) ME(G) # @ . Then there would be an edge uv of G with
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u# x, v#x,u in P, and v in Q . This contradicts
the fact that P 1is the vertex set of a component of G-x.

Hence, (UxV) ME(G) = ® and, similarly, (U'xV') ME(G) = §

Now, if U] + |V] £n -1 and |U'| + |V'|En -1,

then |U| + V| + |JU'] + |V'| £ 2n - 2 , which contradicts

equation (1). Hence, either U] + |V| 2 n or

fu'] + |v'] 2n . Suppose |[U|] + [V] 2n . Then U and V
are both nonempty. To see this, we assume U = @ . Then

[V 2 n, and, since VCT and |T| = n , we have V =T
Therefore, T CQ . But since U 1is empty, P CT , vand it

follows that P € Q . This is impossible, so U # O

Similarly, V # 0 ..

We have constructed nonempty subsets U and V of S
and T , vrespectively, with (UxV) N E(G) = ¢ and
[ul + [Vv] 2n . If JU| + |V] >n , since n 22, we can
remove a vertex from one of the two sets and still have a
nonempty pair of sets satisfying the above properties. By
induction, it follows that we can assume |[U] + |V]| = n
But this is a contradiction, since it implies that A s
partly decomposable, by Corollary 3.7. Hence, G 1is

2-connected.




At this peint it is natural to ask whether the FI
matrices are characterized by the Z2-connectivity of their
bigraphs. The following example shows a 2-connected (n,n)
bigraph G with its representative partly decomposab1e

matrix A , and provides a negative answer to this question.

G:

Theovrem 4.14 tells us which 2-connected bigraphs

correspond to FI matrices.




32

Theorem 4.2: If G 1is a 2-connected graph which is

not a sincle vertex, then we can write G as a union of

subaraphs: G = POlJ P1 U eeo L}Pk (denote the subgranh

PO L)Pl U oo LJPj by Bj for j = 0,1,e¢+,k), where Py

is an edge graph, and Pi is a simple path which avoids

B, , » except for its distinct end points which are contained
)

in V(Bj—l

Proof: We use induction on the number of edges in G
If G has one edge, we write G = PO , and the theorem is
trivially true. Suppose G has n > 1 “edges, and the theorem
holds for all 2-connected graphs with fewer than n edges.
Pick an edge e in G . Then [e] is a proper 2-connected
subgraph and, by Theorem 1.3 (Whitney), G = H UL where H
is a 2-connected proper subaranh of G which contains e ,
and L is a simple path which avoids H , except for its
distinct end points which are in V(H). Then H s a proner
subgraph of G , and hence, E(H) is a proner subset of E(G).
Otherwise, there would be isolated vertices in G , and G
would not be 2-connected. (In fact, & would not even be

connected.) Therefore the induction hvnothesis apnlies, and

- U ¢ o © i
H PO U Pl L)Pk, . Then we can write

G P U=+ee UPp U | | and the theorem is proved.

0 k'
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Note that the representation G = PO U Pl?U‘*f"U Pk
is not unique. We will call P L UP U-*+ U P, a path
decomposition of G . In Chapter III, we see that for
bigraphs corresponding to FI matrices, the integer k “is

unique and depends on G alone, and not on the ‘particular

path decomposition.

Next we investigate path decompositions for 2-connected

bigraphs corresponding to nxn nonnegative matrices.

Suppose A is an nxn nonnegative matrix whose (n,n)
bigraph G is 2-connected. Then G = PO LJPldJ R L’Pk
For a given i , where 1 €14 £k , Py is.a path with end
points, say, u and v’, whose length L s ejther odd

or even. Assume L' is odd. Then dB (U,V)’must bévodd

(equivalently, wu ‘énd V are differ;;%1y co]oréd vertices)
or the adjunction of Pi wou]d 1ntrodu6é é-cyc]é of odd
length into G , contradicting Theorem 1.2. Similarly, if
Pi is of even length, then dBi_l(u,v),must be even (equiv-
alently, u and v have the same color).

Furthermore, if Pi has odd length, then the number

of vertices of each color added to V(Bi_ ) in passing to V(Bi)

1
is the same. If, hbwever, Pi has even 1éhgth'and its end
points are, Fok example green, then the adjunction of Pi

adds r additiona] green vertiéeé and r+1 additional blue

vertices, where r 2 0 . Since PO is a (1,1) bigraph, the
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even paths of any path decomposition of G must balance
properly to achieve an equal number of green and blue vertices
for G . The following is a summation of the preceding
observations. (As always Bi denotes PO(J P1 U eee U Pi

for 0 21 £k .)

Theorem 4.3: Let A be an nxn nonnegative matrix and

suppose its bigraph G 1is 2-connected. Then

(1) 6 = P,YUP, U e UP , where P is an edge

graph, Pl is a simple path of odd length which

avoids Po except for its end points, which

coincide with those of P

0
(2) For 2 £i £k, P. is a simple path which
avoids B, . except for its end points u and

v , which are in V(Bi_ ) , where

1

(a) P, 1is of odd length, and d (u,v) is
* Bia1
odd, or

(b) P. 1dis of even length, and d (u,v) 1is
8 Pioa
even,
(3) The number of even paths among the P.l
(2 £1i £k) is 0 or an even number, exactly

half of which have green end points, the other

half blue end points.
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Before presenting our main results, the following

lemmas are proved:

Lemma 4.4: If A {is an nxn FI matrix with gn»; 2
and if aij is any positive entry of A , then the nxn

matrix A' = A - a. E.. 1s chainable.
ij i3

Proof: The bigraph of a matrix is connected if the
matrix if FI by Theorem 3.2. Let G be the bigraph_cérﬁes—
ponding to A . Then there is aﬁ e in E(G) cofrésponding
to aiy and G' = G - e 1is the bigraphof A' . If G
is not connected, the end points of e , each with a valence
at least equal to 2 , are articulation points in- G , so
G is not 2-connected. This contradicts the fact that

A 1is FI. Hence, G' 1is connected and,‘therefore; A' s

chainable.

Lemma 4.5: If A is an nxn ND matrix with n 22,
and aij is any positive entry of A . then the matrix

A" = A - a, E,. contains a positive diagonal.
ij 1ij

Proof: The lemma is clearly true for n = 2 . Suppose
n > 2 and the lemma ho]&é;fdr ka’ND matrices when k <n
By Theorem 2.3, every ND matrix has a positive diagoha1.
Using Theorem I1.2.1 we bring A into the canonical form
stated therein. If a,., occurs as the positive element of

ij
one of the Ei (1 i £s), then A' still has a positive

IA
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diagonal passing through A, (i £9 £s). If: a5, occurs
in one of the Ai , for example Ai, , and if Ai, is
not 1x1, we invoke the induction hypothesis to establish that

Ai, still has a positive diagonal after the replacement of

aij by 0 . Hence, A' still has a positive diagonal passing

through the A, (1 €1 £5s). If A;, is 1x1, Theorem 2.1

allows us to conclude that there is a positive diagonal

passing through Ei and Ej , where j =1i'" + 1 (mod s)

Lemma 4.6 (Hartfiel): If A s an nxn ND (0,1) matrix
with n 23 , then its bigraph G cannot contain a cycle

of length 4

Proof: Observe that it suffices to show that A does

not contain a 2x2 positive submatrix.

We bring A into the canonical form of Theorem 1.2.1,
and agree to adopt the notation and terminology of that

theorem. Some additional notation is required.

The square submatrices A are said to be n_xn_ for

k ko k
k = 1,°+«+,s . The single positive entry in the submatrix
E, s denoted by a, ; for k = 1.,°++,s . By Ak(1,J)
k- k
is meant the (nk—])X(nk—1) submatrix formed bv strikina out
the vrow and column of Ak corresponding, resnectively. to

the itk row and jth column of A , for &k = T.+e¢+.5s




In asccordance with these definitions, ik

respectively, denote the row and column of

the unigue positive entry of the submatrix

We now show that none of the Ak
|§S

matrix. Suppose for some k' (1 £k

submatrix. Then A

loss of generality, we assume that ikfs i

+
Tkt

which determine the submatrix A But

k ¥

is removable. For, by Lemma 4.4,

At = A - a, | E. .
T kel Ik

that A'

is chainable.

to be shown has support. Suppos

positive entrv of A

where a,

. is an entry of d
Tk Ik el

to consider:

(1) a = aik.+lrjk.+1+l or a = aik
1 2k £
(2) a 1is an entry of Ak for some
1 =k £5
In the first case, there is a
each of Ak(ikgjk+l) for k = T,°°°,s

addition mod s), by Theorem 2.17.

(k =1,

all the d._'s plus the entries a, .
k 1k

and
A

By

)

. is positive, since it is ND.

k v

then

and

e a

+1.

w
~3

N

K

which contains

can be a 2x2 sub-

Ak, is a 2x2

Without

Jryp » aNd

1 index, respectively, the rows and columns of A

&,
k' Ikrel

it remains

is any

which lies on a diagonal d of A ,

There are two cases

for some k ,

k # k',

e ¢ ©
3

positive diagonal d in

k

(again, k+1 denotes

But then the entries of

s), and the
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single entry a,. L form a positive diagonal of A’
- - i, +1,.73,, +1
k k'+1
containing a . In the second case, if a 1is an entry of,
say, A , then A has a rositive diagonal d
ko X, - 0

contéining a , and the entries of dO together with the

entries of some diagonal of each Ao (k # ks k7 k',

1 £k £5s), plus the entries a, . and
1. Jpayqt1
k', k'+1
. . of A , form a positive diacgonal of A
lk‘+l'jk'+l k
containing a . In any case, A' has support and is,

therefore, ND. This contradiction proves that none of the

Ak is 2x2 (k = 1,¢¢9,5).

It follows that the matrix

1 0 1
1 1 0
0 1 1

is the only 3x3 ND (0.,1) matrix (ur to p-equivalence). Hence

it is clear that the lemma holds for all rxr ND (0,1) matrices
with v = 3 , and assume it holds whenever r 2 3 and r < n
Now, sunpaose A contains a 2x2 positive submatrix A' . Then,

by the induction hypothesis, A' 1is not contained in any of

A

the A , for 1

K k £ s . Clearlv, it must be that s = 2

and A corresponds to the canonical form
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It is also clear that a, . and a., . must be
: t191 127,

entries of ‘A' , so that i and i, and j 'énd Jj, are

1 2 1
the rows and columns, respectively, which determine A

"At least one of the A s say A, , s larger than 1x1,

and hence is at least 3x3. Then the positive entry 'ai'i
‘ 271
is removable. For by Lemma 4.4, A" = A - a. . E. . s
i,3, 1,3
L : - 271 T2
chainable. We show that A" has support in the fo]]owjng

manner: suppose a 1s a positive entry of A" which lies

on a djégona] d of A contajning aiéjl . VAgain we
consider two cases: (1) a 1is an entry of A1 , (2) -a -is
an entry of A2 . In the first case, let d1 be anyv
positive diagonal of Al which contains a , and let d2

be any positive diagonal in the submatrix formed from A2
by replacing a; by zero (such a diagonal exists by
2°1 , . L

Lemma 4.5). Then the entries of d, , combined with the

entries of d2 form a positive diagonal of A" <containing

a . In the second case, the entries of d contained in A2

i s and a, .
171 27
form a positive diagonal of A" -.containing a , when A

(other than a, . ), plus the entries a,

54 » s .
2791

1

is Ix1. When Al is larger than I1x1, we must add the

entries of some diagonal in Al(ii,jz). At any rate, A"

has subpport.

This completes the proof of the Temma.
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Lemma 4.7: If A dis an nxn ND matrix with n 2 3 ,
then there are at least three rows and three columns of A

having precisely two positive entries.

Proof: We use induction on n . The lemma is clearly
true for the 3x3 ND matrix (see proof of Lemma 4.6). Suppose
n >3 . We put A in the canonical form of Theorem 1.2.1.
If every Ai , where 1 £1=s , 1is 1x1, the Temma is
clearly true. If some Ai, is not 1x1, it is at least 3x3
and satisfies the induction hypothesis. It is clear that
Ai, contributes at least two rows and two columns of A
which contain precisely two positive entries since Ei;
and Ei [k = io + 1 (mod s)] contain only one positive

k
entry each. The Temma follows.

Definition 4.1: If P = VoViteov, is a simple path in

a graph G , then the edges, if any, of G (other than vovl)
which are incident to the end point v, are called the edges
of attachment of Vo with respect to P . The edges of
attachment of the end point v, ~are defined similarly.
Henceforth, when there is no danger of confusion, the qual-

ifying phrase "with respect to P " 1is suppressed.

Definition 4.2: Let G be an (n,n) bigraph, and

suppose v is a divalent vertex of G . Let a and b be
the unique vertices which are adjacent to v . We form a

new entity G' by eliminating the vertex v and the edges




av and vb from G ., and {dentifying the vertices a and b
to form'a'STng1e vertex v' (see fig. 4.1). MWe call G
the contraction of G with respect to 'V

Notice that in general G' "~can contain loops or mul-
tiple edges and, therefore, nofzbe a graph atcordﬁng to our

definition. Foftuhate]y, in the interesting case df»bigraphs

of ND matrices,, G' . is a graph.

G':

Fiqure 4.1

Definition 4.3: If G is the bigraph of an FI matfﬁx
A, the edge e is said to be memovable if G-e is the

biaraph of an FI matrix A'

An immediate consequence of the above definition is

that if G is the biaraph of an FI matrix A , an edge e

of G 1is removable if and only if the positive entry aij

of A , which corresponds to e , is removable.
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Lemma 4.8: Let A be an nxn FI matrix. Suppose aij
is an entry of A which is not removable, and a_, an

entry which is removable. Then aij is not removable in

A_astEst'

Proof: aij is the only positive element in an sxt

submatrix of A (and, hence, of A-as E ) with s + t n

t st

Recall that a node w is a vertex which is not
divalent. In the case where w 1is a node of the bigraph of

an FI matrix, Theorem 2.5 tells us that‘ val(w) 2 3

Theorem 4.9: Let G be the bigranh of an nxn ND (0,1)

matrix A , where n 23 . Suppose G has a divalent

vertex v whose adjacent vertices are nodes. Then the con-
traction G' of G with respect to v is a granh. Further-
more, G' 1is the bigraph of an (n-1)x(n-1) ND (0,1) matrix

A' , and per A = per A'

Proof: Let a and b be the distinct nodes in V(G)
which are adjacent to v . Then a 1is not adjacent to b
Let'{el,-§~,eq} and {fl,---,fr} denote the edges of attach-
ment of a and b , respectively. We will refer to these
edges by this terminology whether we are considering them as

being either in E(G) or in E(G'). (See Figure 4.2.) Observe
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v
G: e
G 1
Figure 4.2
that since a and b are nodes, q 22 and r 22 . We

will divide the proof into four parts:
(1) &' dis a graph.

(2) There is a 1-1 correspondence between the 1-factors
of G and G' , vrespectively, such that if the
I~factor F of G corresponds to the 1-factor

F'' of G' , then the edges of F in E(G")
coincide with E(F').
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(3) G' corresponds tc an (n-1)x(n-1) FI (0,1) matrix
A" , and Per A = Per A'

(4) A' is ND, or equivalently. no edge of G' s
removable. We will demonstrate this by assuming
that there is an edge e in E(G') such that G'-e
is the bigraph of an FI matrix, and showing that,
in this case, G-e is also the bigranh of an FI

matrix, which contradicts the fact that A was ND.
The proofs of (1) through (4) follow:

Proof of (1): It is clear that G' s a graph if and

only if it has no loops or multinle edges. Now, G' has a
loon if and only if a and b are adiacent. In this case,
the cycle avba has length 3 , contradicting Theorem 1.2.

Also, G' has multiple edges if and only if there is a vertex
w# v , such that w 1is adjacent to both a and b . In
this case the cycle avbwa has length 4 , which contradicts

Lemma 4.6. It follows that G' 1is a graph.

Proof of (2): Suvbpose F s a 1-factor of G . Let

F' = E(F) NE(G') . It is clear that F' 1is an independent

1

set of edges which covers every vertex of G excent.

possibly, v We have either that av is in E(F) and vb is

not, or vb is in E(F) and av is not. In the former case,

b is covered by an edge of attachment fi e E(F) . But
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then f,. ¢ F' and . f,
: 1 1

covers v' . Similarly, in the

remaining case, there is an e.,, € F' which covers v'

We have shown that [F'] is a 1-factor for G' which
lié uniquely determined by F 'and has the séme edges as F
in £(6'). We write [F'] = n(F) . On the other hand, if

F'' is any 1-factor of G' , E(F') contains either an edge

of attachment e of a or an'edjéIOf attachment f

3 tl

A
A

of b . Say e_e E(F') . Then f_¢ E(F') for 1 <1< vr,
so that F = F' U [vb] 1is a 1-factor of G having the same
edges in E(G') as F' . Clearly, =(F) = F' . This estab-

lishes the desired ]—lrcorrespondence.

Proof of (3): Observe that G' s connected since G

is connected. If e ¢ E(G') , there is a 1-factor F of

G such that e e E(F) . But then using (2),”‘e e E(n(F)) ,
and it follows that any edge of &' is contained in a 1-factor
of G' . G' dis an (n-1,n-1) bigraph, and we 1ét A" be any
(n-1)X(n—1), (0,1) matrix representative of G' .. Then Al

is FI by Theorems 2.3, 3.2, and 3.3. Furthermore, it follows

immediately from (2) that per A = per A’

Proof of (4): Assume that e is a removable edge of

G' . Then G'-e is connected and has subhort. We know that
G-e 15 connected, otherwise G could not be 2-connected.
Ne‘w111 now show that e is removable from &G by demon-

strating that G-e has support.
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Consider first the edges av and bv of G-e . Notice
that there still remains in E(G'-e) at least one edge of
attachment e of a . (This is because g 2 2 and

r 22 .) Now, e, € E(G'-e) so there is a 1-factor F'

of G'-e which contains e , and contains no f., , where

IIA

1 i £vr . Then F' U [vb] 1is a 1-factor for G-e which
contains vb. In a similar manner, we find a 1-factor of

G-e containing av.

It remains to show that if f 1is an arbitrary edoe of
f-e other than av or vb, then f 1is contained in a 1-factor
of G-e. But this is trivial, for there is a 1-factor F
of G'-e containing f . F' contains an edge of attachment
e, of a or f, of b . In the former case F' U [vb]
and in the latter F' U [av] are 1-factors of G-e containing

f . Hence, G-e has support and therefore, is FI. This

completes the proof of the theorem.

Theorem 4.9 has shown us that if A is a special type
of ND (0,1) matrix, we can associate with the bigraph G of
A a strictly smaller bigraph G' , which also corresnonds
to an ND (0,1) matrix. We need a similar result for the

remaining ND matrices, and this is provided by the following.
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. Theorem 4.10: Let G be the bigraph of an nxn ND (0,1)

matrix A ,  where n 23 .- Suppose . .G . does not have a
divalent vertex whose adjacent vertices are nodes. G does
haQé'a diva]ént vertex v ,” by‘Lémmé‘4i7Q“'At'Ie;§t'one of
‘the two vertices adjacent to v , say, w’,; is also
divalent. , We denote the unique vertices,adjacentzto v and

w , respectively, by a.and b (fig. 4.3). . Then the

‘ v W
: O-= O=
G:
G!

Figure 4.3
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6' of G with respect to v 1is a graph.

Furthermore, one of the following is true:

(1)

(2)

G' is the bigraph of an (n-1)x(n-1) ND (0,1)

matrix A' , or

The edge v'b is removable from G' and, in this
case, the graph G" = G' - v'b 1is the bigraph of
an (n-1)x(n-1) ND (0,1) matrix A"

In either case per A = per A'

Proof:

Theorem 4.9.

parts:

(1)

(2')

We will parallel very closely the proof of

The proof of Theorem 4.10 is divided into five

G' 1is a graph.

There is a 1-1 correspondence between the 1-factors

of G and G' (as in Theorem 4.9).

G' corresponds to an (n-1)x(n-1) FI (0,1) matrix

A' with per A = per A'
No edge of G' , other than v'b, is removable.

Either G' or G" = G' - v'b corresponds to an

ND (0,1) matrix.
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Proof of (1'): We let a,v and w correspond to the

vertices a,v and b , vrespectively, in Theorem 4.9. The
proof is then identical to the proof of part (1) of that

theorem.

Proof of (2'): Let F be a l1-factor of G . Then

either vw is in E(F) or av and wh are in E(F). In the former
case, F' = [E(F) N E(G')] , and in the latter case,

F' = [E(F) NE(G')] u [v'b] 1is a 1-factor for G' which

has precisely the same edges in E(G') as F does. We write
F' = 7(F) . Now if F' is an arbitrary 1-factor of G' ,
either v'b ¢ E(F') or not. In the former case

F=F"U[av] U[wb]l , and in the latter, F

it

F'u [vw]

is the unioue 1-factor of & such that =(F) = F'

Proof of (3'): This proof is identical to the proof

of part (3) of Theorem 4.9,

Proof of (4'): The edges of attachment of a in G

and of v in G' are identical. Also, b has the same
edges of attachment in G' as in G . Suppose there is an
edge e # v'b in G' which is removable. Let f be an
arbitrary edge of G-e. If f = av or f =wb , we Tet F'

be a 1-~factor of G'-e containing v'b. Then
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F' U [av] U[wb] is a T1-factor of G-e containing av and wb.
If f = vw , there is a 1-factor F' of G'-e containing
edges of attachment of v' and of b , vrespectively, in
G'-e. Then F' U [vw] 1is a 1-factor of G—é containing vw.
In the remaining case, f does not lie on the path avwb, and
f occurs in G'-e. There is a 1-factor F' of G'-e con-
taining f , which contains v'b or does not. In the former
case, F = F'U [av] U[wb] , and in the latter case,
F=F"uUlvw] {is the 1T-factor of G-e which contains f

Now G-e is connected, for otherwise an end point of e would

be an articulation point of G , which contradicts the

2-connectedness of G

Proof of (5'): G' —corresponds to an (n-1)x(n-1) FI

(0,1) matrix A' . We consider two cases:

(a) wu'v is not a removable edge. In this case A' s

ND.

(b) wu'v is removable. By Lemma 4.8, no edge of G'-u'v
is removable, and if u'v corresponds to the posi-
tive entry a,. of A' , then A" = A' - a, E. .
ij ij 713
is ND.

This completes the proof of the theorem.
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The following graphs illustrate that both of the condi-

tions treated by Theorem 4.10 can exist.

) ®

0 <

(1) G: - G':

o ¢
=
o

In this exampWekwe see that G s ND, and v'b is removable

from G'

(2)

Here, G and G' are ND.
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We now use the inductive tools developed in the pre-

ceding theorems to prove our main result.

We first need a few lemmas:

Lemma 4.11: If n 2 , and 4 is the bigraph of an

liv

FI nxn (0,1) matrix A , and if v 1is a green vertex and

w a blue vertex of G , then 6G-{v,w} contains a 1-factor.

Proof: This lemma is a direct conseguence of

Theorem 2.1.

Lemma 4.12: Suppose the graph G has a path decom-

position G = P_ U «ss UP (as usual, B, =P U «¢ec U P,
k Jj 0 3

for j = 0,+++,k) such that PO is an edge graph and Pi

(i = 1,++¢,k) is a simple path which avoids Bi , except

-1
for its distinct end points, which are contained in V(Bi_l).

Then if v e V(G) , v 1is either an end point of PO or,

otherwise, an interior vertex of some P, (1 = T,e0,k).

Proof: We use induction on k . The lemma is trivially
true if k = 0 . Suppose k > 1 and the lemma is true for

Bk_l . Then the lemma holds bv the induction hvpothesis for

those vertices (including the end points of Pk) which are

in V(B ). The remaining vertices of G are interior to

k-1

Px
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Lemma 4.13: Under the hypothesis of Lemma 4.12, each

vertex of G s interior to at most one of the Pi

Proof: This follows trivially from induction on Kk

Theorem 4.14: Let G be the bigraph of an nxn (0,1)
matrix A . Then A is FI if and only if there is a path
decomposition G = Py U P U e uUP, (Bj as usual denotes
Py U P, W) e UPj for j = 0,¢¢+,k) satisfying thg,
fo]Towing: |

(1) P, s an edge graph.

(2) P, (i =1,2,+,k) is a simple path of odd

1

length, which avoids B except for its end

i-1
vertices u and v ; and d (u,v) is an
i-1
odd positive integer.
We will henceforth refer to any path decomposition for

G which satisfies the hypothesis of this theorem as a good

path decomposition for G

Proof: Let G = PO U PllJ coe U,Pk be a good path
decomposition for G We use induction on k to prove
(a) that G 1is connected and (b) that G  has support. If

k

]

G

Bk_l U Pk is connected. Now let Pk = V0V1°'°Vs R

0 , it is clear that G satisfies (a) and (b). Clearly,
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where s 1is odd. Partition E(Pk) into the two sets

XK= Avgv sV, vaseme,v v ] qnd

i

Y } . Suppose f is any edge in

), X,

TV Vo svgVy s eV oV

G . Then f 1is in one of the disjoint sets E(B

k-1
or Y . If f ¢ E(Bk_l) , there is a 1-factor F' of
Bk_l with f ¢ F' . But then F' W [Y] 1is a 1-factor of
G containing f . If f eV , we observe that B _,  has

some 1-factor F' since it is FI, and F' U [Y] yields the
desired 1-factor of &6 . If f e X , Lemma 4.11 tells us
that G-{VO,VS} contains a 1-factor F' , and then F' U [X]
is the desired 1-factor of G . Since f was chosen
arbitrarily, G has support. In any event, G satisfies

(a) and (b), and it follows that A is FI.

We now prove the converse with the aid of the preceding
theorems. Suppose A 1is FI. Observe that if n =1 or
n=2, G 1is an edge graoph or a 4-cvcle, respectively. The
theorem is clearly true for these cases S0 we may assume
n 23 . We will use induction on N , the number of edges
in E(3). By Theorem 2.5 N 26 . If N =6 then A 1is 3x3
and no element is removable. Then A must be p-equivalent
to the 3x3 ND matrix shown in the proof of Lemma 4.6. In
this case, G 1is a 6-cycle, and obviously satisfies the

theorem.
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Suppose then that N > 6 , the theorem holds for any
K, when K is a bigraph of an FI matrix with |E(K)| = M

and M N . We distinguish three cases:
Case I: G has a removable edge e

G-e satisfies the induction hynothesis and we write
G - e =P UP_ U e UP . But then
0 1 s

G = PO U eee LJPS U [e] satisfies the theorem.

Case II: G has no removable edges, and G has a

divalent vertex v which is adjacent to two nodes.

We can apply Theorem 4.9. We adopt the terminology and
notation of that theorem and refer to Fiqure 4.2 in the

following:

G' satisfies the induction hvpothesis, so we can write

A
A

G' = PO\J soe LJPS . By Lemmas 4.12 and 4.13, v' is either
an end point of PO » or interior to some Pi (1 i s).
In the first instance, we can assume without loss of gener-

ality that PO is an edge of attachment fi, of b . Also,

v' is an end point of Pl We denote the other end point
of Pl by wu ; If the edge of Pl , Which is incident to
v", is an edge of attachment e, of a R We let

Pi = Pl U [avb] , and identify v' and a so that Pi is

a.simple path of odd length with end points u and b
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Then PO U Pi U P2 U oo U Ps is a good path decomposition
for G . If the edge of Plv, which is incident to v' ,

is some edge of attachment fi" of b other than f,, =P

it 0
we observe that the edges of attachment e, (i = 1,0o0¢,r)

of a correspond to the edges of distinct paths Pj
i
(i = 1,e¢+,r) which have end point v' . Let P, be the
i 1
one having the smallest index ji, , wWith end points v'

and, sav, u . Let P% be the path Pj J [avb] , with
Ji0 i
i Then, P% is a simple path of G
,il

of odd lTength with end points b and u , and

b dincident to f

® © O 1 ® o e 3 ‘
PO ) L)Pji'_liJ Pji' U Pji'+l U L)PS is a good path

decomposition for G . The remaining possibility in Case II
is that v' 1is an interior vertex to some P , Where

i ]

1 £i' £k . 1In this case, two edges of Pi are incident

We must distinguish two cases:

(a) Both of the edges of Pi incident to v'
occur among the edges of attachment either of a
or of b . Without loss of generality, we can
assume that they are edges of attachment of a
In this case, all the edges of attachment of b

are end edges of distinct paths Pi ,», Where

3
Jo= T,eee,r . Let P, be the path with the
j ]
smallest index, and suppose its end point, other

than v' , to be u . We form the simple path
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of odd length Pi =P, U Lavb] with end
' 3! 3!
~points u and a , by making b incident to

the edge of Pi which was incident to v' in
G' . Then
Po U »ee L)Pi o Y Pi_'LJ Py ST U‘PS is a

. | 5
good path decomposition for G

(b) One of the edges of Pi incident to v' is an
edge of attachment e of a and the other is an
edge of attachment f of b . In this case, we
mere1y set Pi = Pi U [avb] , where a is
incident to e and b is incident to f . Then
PO U oo g)Pi_l U Pi U Pi+l U eee U Ps is a good

path decomposition for G

This completes the proof of Case II. Thére is one

remaining possibility.

Case III: G has no removable edaes, and every diVa1ent

vertex v has an adjacent divalent vertex w

In this case, we can apply Theorem 4.10. We adopt the

terminology of this theorem, and refer to Figure 4.3.

If G' s ND, then G' satisfies the induction hypoth-
esis and we have a good path decomposition

G' = PO U eee LIPS . Now the edge v'b occurs in one of the




Pi , Ssay, in Pi . In this case, we simple insert the
' 1
path avw into P, to form the path 0, . Then
t1 ‘ t1
Py Uss=UP, _UQ UP, U e UP T a good‘path

+
1 1 1 1

decomposition for G
If G' 1is not ND, G" dis, and we can write
i = o e o M = e e o i
G' =P, U UP_; then G Py U U P U [avwb] s

a good path decomposition for G . This completes the proof

of the theorem.

The following result is implied immediately by the

preceding theorem.

Theorem 4.15: If G s the bigrach of an nxn (0,1) ND

matrix A , then in'the decomposition G = POlJ Pl U eee U Pk

of Theorem 4.14, Pi has Tength 2 3 for i = 1,c¢¢,k

Proof: Say P., has Tength 1 , where 1 <i's k

Then G' = PO U eee U Pi,_lkJ Pi'+l U oeee U Pk corresponds
to an FI matrix by the proof of the first part of Theorem 4.14.
But then the edge E(Pi,) is removable, contradicting the fact

that G was ND.

We show below that this last result is equivalent to
Hartfiel's Theorem (Theorem 1.2.3), and thus, can be con-

sidered the graph theoretical analogue of that result. In
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the next chapter, we will use Theorem 4.15 extensively in
deriving some properties of FI matrices, and in . particular,

of ND matrices.

Theorem 4.16: An nxn (0,1) matrix A satisfies the

conclusion of Theorem I1.2.3 if and only if its bigraph G

satisfies the conclusion of Theorem 4.15,

Proof: We will adopt the notation of the theorems

cited.

Suppose that A satisfies the conclusion of

Theorem 1.2.3. The cases where n =1 or n = 2 are

trivial, so we may assume that n 2 3 . We will proceed by
induction on n . If n =3 , either Al = A2 = A3 =
the 1x1 matrix 1 , or Al = 1 and A2 is the 2x2 ND

matrix. In either case G <clearly satisfies the conclusion
of Theorem 4.15. Assume that n > 3 , and that the

result holds for sxs (0,1) matrices, when 3 £ s < ﬁ

Observe that the vertices of G <corresponding to the rows
of A numbered T,¢--,s-1, and the columns of A numbered
1',¢e9,(s=1)"', are the interior vertices of a simple path

P =v which avoids the bigraph of

aV1V1 " Ve Vis-1) Y 0

AS , except for its end vertices vV, and Vo which corres-

pond, respectively, to some row and column of As . By the

conclusion of Theorem 1.2.3, AS is ND. It follows that
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AS satisfies the hypothesis, and therefore the conclusion of
Theorem 1.2.3. By our induction hypothesis, the bigraph Gs
of As has a good path decomposition GS = PO U Pl U oo LJPk
satisfying the conclusion of Theorem 4.15. " But then

PO LJPl U ees U Pk U P dis just such a decomnosition for G

Conversely, suppose G satisfies the conclusion of

Theorem 4.15. Again, we proceed by induction on n , and

quickly settle the cases n =1, 2, and 3 . Now
G =P, UP U- - U P . Since the length (odd) of P, 1s
at least 3 , Pk has an even number (at least 2) of interior

vertices VisVyatee Now simply write a

’V(s—l) ’V(s—l) !

representative matrix A by letting the ith row and jth
cotumn of A correspond to Vi and vj, respectivelv, for

121,

[T

s -1 . Let AS correspond to the bigraph of

B = PO U eer UP

i -s+
-1 where AS occupies the n-s+]

k-1 °
remaining columns and the n-s+1 remaining rows of A

ordered in some arbitrary fashion. Then AS is at least
1x1 (since Pk has odd length), and is FI by construction.
But Bk_l has no removable edges, for otherwise G would.
It follows that AS is ND. This completes the proof of the

theorem.
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IIT. APPLICATIONS OF THE MAIN RESULTS

In this chapter the results of Chapter IIbare applied
to the derivation of some basic properties of FI and ND
matrices. In addition, some further results are developed

concerning these matrices.

1. Examples of FI Matrices and Their Bigraphs

Some specific examples familiarize the reader with the
techniques of associating particular matrices with particular
bigraphs and illustrate the usefulness of big;aphs in identi-
fying FI matrices. We also answer a few questions which arose

during the course of our research.

In [19], the author depends heavily on a result (stated
herein as Theorem I1.3.1 of Chapter II) to determine whefher
or not certain nonnegative matrices are irreducible. In
general, for a given nonnegative matrix A , it is probably
not as formidable a task to decide by inspection whether or
not A 1s FI as it is to decide whether or not A is irre-
ducible. The former is not always an easy task, however, even
for matrices of fairly small order. On the other hand, it is
usually quite easy to determine whether or not the associated
bigraph G has a good path decompbsition. The following

matrix and 1ts‘bigraph illustrate this point. It is difficult
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to ascertain by inspection that the following matrix does not

have an sxt zero submatrix with s + t =n

ito2" 3 4 5 6' 7' 8!
1 1 0 0 0 0 1 0 1
2 0 1 0 0 0 1 1 0
3 0 0 1 0 0 1 0 0
4 0 1 0 1 1 0 0 0
5 0 0 0 0 1 1 0 0
6 0 0 0 0 0 0 1
7 1 1 0 0 0 0 0 0

On the other hand, one may readily see that the corresponding

bigraph has several good path decompositions:

8!
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Two possible good path decompositions are:

’ = t \ . - '

P, = 22 ) Py 18
- 1 1 i = ] 1 ]

Pl = 26'55'42 Pl 16.27 68

P, = 44'88'16' P, = 22'44'88
- 1 & ’ - i 1

P, = 27'68 P, = 11'72

P4 = 83'36" P4 = <83 36

p = 11'72! P = 45'56"'

Notice that both decompositions have the same number of com-
ponent paths. We will show in the next section that for the
bigraph of an FI matrix, this number is the same for any good

path decomposition.

Notice also that for a given path decomposition,
PO U Pl is always a cycle and, in the example shown here, two

different cycles were chosen for P0 U Pl . We challenge the

reader to discover in this example a cycle which cannot be

taken for P0 U Pl for some good path decomposition. In the

course of this research, the question arose as to whether any
cycle in G could be taken for PO UPl in some good path
décomposition. The following example shows that this is nbt

the case, even when G corresponds to a matrix which is ND.
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G is FI because it has the path decomposition

P0 = 11!

Pl = 17'43'32'21"
P2 = 16'65'72

P3 = 44'55

However, the cycle 11'22'33'44'55'66'1 cannot correspond to
PO LJPl for any good path decomposition. Observe that the
matrix corresponding to G is ND since each edge is incident
to at least one divalent vertex and, hence, if e 1is any

edge of G , anv matrix representative of G-e would not

satisfy Theorem 11.2.5.
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Theorem II.4.15 asserts that if G = PO U oo LJPk is
any good path decomposition for a bigraph G of an ND matrix,
no Pi has length 1 for 1 = 1,2,°°°,k . In view of this
result, it is natural to ask if there exists'a biaraph G
'correspohding tovan ND matrix A such that both end points

of some edge of G are nodes. The following example illus-

trates that this can happen.

1! 3 3! 2
o 9 o o
6'Q o4
G: | 69 o4
= O O O
1 5 5 2!

It is obvious that G 1is FI. To see that G is ND,
we observe that 33' and 55' are the only edges which could
possibly be removable. If we remove 33', then U = {1,3,6}
and V = {2',3',4'} are an independent set of vertices with
U] ¥ |[V|] = n . Alternatively, observe that the removal of

any edge of G Tleaves a bigraph which is not 2-connected.
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2. Basic Properties of ND Matrices

In this section we use the results of Chapter II to
develop some basic properties of ND matrices. We first estab-

1ish the useful concept of the "degree" of an FI matrix.

Theorem 2.1: Let G be the bigraph of an nxn FI (0,1)

matrix A . Let N = |E(G)] . (Equivalently, N = the number
of positive entries in A .) Suppose G = Py WP U cee UPL

is any good path decomposition for G . Then k =N - 2n + 1

Proof: We use induction on n . If n =1, then
G=P , k=0, so N-2n+1=1-2+1=20, aﬁd the
theorem holds. Let n > 1 , and suppose the theorem holds
for any mxm FI (0,7) matrix A' such that m < n . Suppose
the length of Pk is L , so that Pk introduces L new

edges and L-1 new vertices to G , half green and half blue.

Then B = PO\J P1LJ 0o LJPk_

re
k-1 corresponds to an

1

(n—Lé1 X n—L%l) matrix, which satisfies the induction hypoth-

esis. Therefore, (N - L) - 2<n - L é ]) + 1=k -1 . It

follows that N - 2n + 1 = k

The above theorem shows that anv good path decomnosition
of G has the same length k , which depends only on the
size n and the number of positive entries N of the FI
matrix A . We call k the degree of the FI matrix A and

also refer to k as the degree of G
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The next theorem gives an uppner bound estimate for

the number of positive entries in an ND matrix.

Theorem 2.2: Let G be the bigraph of an nxn ND (0,1)

matrix A , where n 23 . Let N = |[E(G)] . Then
NS 3n -3

Proof: We use induction on the degree k of G . If
k =1, then G is an r-cycle where r is an even number
26. In this case N =2n and 3 £n . Hence 0<n -3,
ksd Nvé 3n - 3 . Let k >1, and supbose the theorem holds
for ND matrices of degree less than k . Let
G = PO UPl U eee L)Pk be a good path decomposition for G

Let L be the length of Pk . Then Bk_l satisfies the

induction hypothesis, so N - L £ 3(n - L é ]) - 3 . There-
fore, N £ 3n - % (

L 1) = 3+ L . But bv Theorem I11.4.15
3 =L, so - %vL s - % . It follows that N £3n - 3

We end this section by showina that for each n , there
is only one.nxn ND (0,1) matrix A , un to p-equivalence,
for which N = 3n - 3 . Thfs theorem illustrates how the
bigraph concept can be used to illuminate what miaght otherwise

be an exceedinglv unattractive combinatorial argument.

Theorém 2.3: Let G be the bigraph of an nxn ND (0,1)
matrix A , with n 23 . Let N = |E(G)|] . Then N = 3n - 3

if and only if A 1is p-equivalent to the matrix:
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At =
Proof: Suppose A 1is p-equivalent to A' . It is
then clear that N = 3n - 3 for the ND matrix A' , and
therefore for A . Conversely, suppose for a given ND matrix

A, N=3n -3 . Observe that A 1is p-equivalent to A’

if and only if G has the form
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where G = Pé LJPi U eoe L)Pﬁ . We will prove the theorem by
showing'that G has this form. We proceed by induction on
n. If n=3, 6 1s a cycfe of 1ength 6 , Hand the
theorem is satisfied. We now suppose n > 3 , and that the

theorem holds for (n-1)x{(n-1) ND matrices with N = 3n - 3

Since n >3, k21 . Now suppose Pk has length L ,
where L 2 3 fby Theorem 11.4;15. Then Bk_l is an (m,m)
bigraph with [E(B__ )| =M , which corfeépﬁhds‘to an mxm
ND (0,1) matrix A" . Observe that M = N - L , énd
m=n - L& 5'] . We now show that L =3 . If 3 <L ,

we have |

0 ST

Now, by Theorem 2.2, M £3m - 3 , so we canh write

- < I S I - 3 3 _
N L & S(n > 3 3n 5 L+ 5 3
or by (1) above
1 3 3 3 _

N & 3n - sL+t5-3 < 3h -5+ 5-3 = 3n-3
But fhis contradicts the assumption that N = 3n - 3 It
follows that L = 3 . This implies that M = N - 3 and
m=n - T

Now observe that . if m =2, B would be a cvcle

k-1
of‘1ength 4 , and G would not satisfy Lemma 11.4.6. 1If

m=1, then n =2, which contradicts our assumptions,
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Therefore, m 23 , and Bk_l satisfies the induction

hypothesis and has a representation

with B, _, =P, UP U e UP . The vertices labeled with

integers, we call green; those lTabeled with primed integers,

we call blue. Since the length of Pk is 3, Pk has

interior vertices n and n' which are adjacent, respec-
tively, to a blue vertex a' and a green vertex a . By

definition a' and a <coincide with vertices of Bk_l
To complete the proof, it is sufficient to show that a = 1

and a' = 1"
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We accomplish this by showing that all other possible
assignments for a and a' yie]d a graph with -a removable.

edge. Without loss of generality we consider just six cases:

Case I: n =4 . In this case, Bk_l 1s,aAqyc1e of
length 6 , and unless d (a,a') =3 , we have
Br-1
dB (a,a') =1 . The theorem is satisfied in the former
¢ kel

instance but in the lattef; the edgé aa' ﬁS‘femoyab1e.
We henceforth assume that n 2 5

Case II: a=1, a'=3". 1In this case, if
G' =G - 13", the cycle In'n3'31'22'1 <can be taken as
PO U P1 for a good path decomposition, and therefore G'

is FI.

Case III: a =2, a' =3' . Let G' =G - {13',21"'}

- Then the cycle 3'nn'22'14'41'33' can clearly be taken as

1 POIJ Rl for some good path decomposition.. -

Case IV: a = 1 ;‘ a' = 4' . let G' =G - 14' . Then

2

‘ e 8 6 ’ 1 ‘
PoUP UPLU P, is FL.

let Pé'% Tn'nd'41" replace P in thebdecompositﬁon for

. 1]
Bk~1 ; then G

Case V: a =3, a' = 4' .‘.Let G' = G - {14',31'}
Then the cycle 3n'n4'41'22'13'3 can c]eér]y be taken as

Py LfPl for a good path decompositibn.
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When n > 5 , we must consider:

Case VI: a =4, a'=5". Llet G' =6 - {15',41"}) .
Then let PJ = T4"4n'n5'51" , and we can write
G' =P, UP UP UP U UP

1 This completes the

proof of the theorem.

3. 0On Minc's Lower-Bound Estimate for the Permanent of

an FI (0,1) Matrix

In 1969, Minc [11] announced that for all nxn FI (0,1)

matrices:
per A 2 N - 2n + 2

where N equals the number of positive entries in A

(Equivalently, N = ;E% 2y )

In the following, we present a new, short proof of Minc's
inequality based upon preceding material in this paper. Our
main result in this section is Theorem 3.2, which shows that,
in a sense, Minc's result is the best possible estimate in

terms of n and N

Observe that if A is an nxn (0,1) matrix, and if B
is p-equivalent to A , then per B = per A =K . It is
then clear that the number K dis an invariant of the

np-equivalence class of A ; in fact, it corresponds to the




73

number of distinct 1-factors of the bigraph G of A (see

Corollary I11.3.4). Without danger of confusion, we will

denote this unique number corresponding to an (n,n) bigraph

G by "per G " Then, by definition, if G is the bigraph
of an nxn (0,1) matrix A , per G = per A
Theorem 3.1: If G s the bigraph of an nxn ND (0,1)
matrix A , and if N = |E(G)| , then per G 2N - 2n + 2
Proof: According to Theorem 11.4.15,
G = PO U Pl U e LJPk , Where the length of Pi is at

least 3 (i = 1,e¢+,k). We use induction on the degree k

of G to show that per G 2 k + 1 For k =0 ,: per G = 1 ,
and the theorem holds. Suppose 1 £ vr £k , and

per B__. 2 (r = 1) +1 Now P_ is a path of odd 1ength

L 23, say, Pr AP SRR Let

X o= {vgv sV, va,eee,vo v b and ;Y = AV VsV s,y v Ll
Then the 1-factors of B_ will be the subgraphs F u [Y]

and F' U [X] , where F is any 1-factor of Brml',' and

F is any l1-factor of Br_l-{vo;vL} Thus, Y is contained

in the edge set of exact1y’per B 1-factors of ‘Br s and,

r-1

by Lemma II.4.11, X s contained in at least one other

1-factor of Br 1t foT1ows that

2 -

+

per B_ -1

per Br

comp1etes the indUction argumeht,

per G 2 k + 1

have per G 2 N - 2n + 2

(r = 1) +

By Theorem.2.1,‘ k

1+ 1 =7p+1 This

It follows that

=N -2n+ 1, and we
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Since per G = per A , this result yields Minc's

estimate.
We now need the following graph—theoretica1 lTemma:

Lemma 3.3: If the graph G s a forest, then the

number of distinct 1-factors in G 1is at most one.

Proof: We define a pendant edge of G to be an edge
with precisely one monovalent vertex. Now, if the components
of G consist only of edge graphs and vertex graphs, the
theorem is evidently true. Suppose there is a component T
of G which is not an edge graph or vertex graph. NoQ T
is a tree, so by Theorem II1.1.4, T has at least one mono-
valent vertex v . Since T s connected and not an edge
graph, v must be adjacent to a vertex w with val w 2 2
Hence, T has a pendant edge vw. Now suppose F is any
1-factor of G . Then E(F) covers both v and w , but
this can only happen if wvw € E(F) . Therefore, the edges
other than vw which are incident to w are not in E(F) and
therefore not edges of any 1-factor of G , since F was
chosen arbitrarily. It follows that the graph T-{v,w} has
precisely as many distinct 1-factors as T . If T-{v,w} has
a pendant edge, we repeat the process. Since E(G) is finite,

we eventually arrive at a graph T' having no pendant edges,

where T' has precisely as many 1-factors as T . But T
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must then be a graph whose components are edge graphs or
vertex graphs. (Note that we cannot have both E(T') = §

and V(T') = ¢ because if v is a vertex of a graph G ,

G -v=20 if and only if YG {v} .) Then if anyvof the
components of T' is é vertex‘gréph, T' has no‘1—factors.
If all the components of T' are édge graphs,’ LI ha§ a
single 1-factor. A1l the components of G éan Qelreduced
in fhis manner, and since the number of distinct 1—factoks

of G equals the product of the numbers of distinct 1-factors

in each component, G has at most one T—factor.

The fo]]owing theorem shows that Minc's lower bound can
be achieved for every possible value of .n and N for which

there is an nxn ND (0,1) matrix with N positive entries.

Theorem 3.2: Let n be an integer, with n 2 3

Suppose 2n £ N £3n - 3 . Then there is a bigraph G
corresponding to an nxn ND (0,1) matrix A with |E(G)| = N ,

and per G = per A = N - 2n + 2

Proof: Let k =N -2n+ 1 . Then k 21 , by the
inequality stated in the hypothesis. We construct the graph
G with the path decomposition G = P U P U eee U P, as
‘f0116ws: Let L, denbte the Tength of the path ~Pi- for
i =20,¢+,k . We assign the following lengths: LO ?_1 R

Ll =N - 3k + 2 , and L2 = L3 = eee = Lk = 3 . Then
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L, =N - 3(N - 2n + 1) + 2 = =2N + 6n - 1

2(-6n + 6) + 6n - 1 = 5 . We construct G according to its

path decomposition as usual, with the end points of PO

coincident with those of We have that the cycle

Pl
Bl = P U P, has length 2 6 , so it is possible to pick
vertices u and v of different color in E(Bl) with
dB (u,v) 23 . We now take u and v to be the end points

1
of Pi for i = 2,++¢,k (see fig. 3.1).

Figure 3.1

Clearly G corresponds to an FI matrix A by
Théorem II1.4.14;: and, since every edge of G 1is incident to
at least one divalent vertex, no edge of G is removable.
It follows that A is ND. It remains to show that
per A = per G =k + 1 =N-2n+ 2
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We use induction on k . The theorem is true for
k =1 . Let 2 £r <k and suppose per B, = (r = 1) + 1
As in the proof of Theorem 3.7, if .Pr = yov;-~-vL ,» the

. - e . :

the 1-factors of Br are partitioned into two classes, those
‘containing the edges in X and those containing the edges
in. Y . The number in the former class equals

per (B__.-{u,v}) . The number in the latter class equals

oy = tusvl)

- {u,v}) 21 by Lemma II.4.11. However,

per B__, . Hence, per B = per B _ + per (Br

Again, per (B __,

it is evident that B__.-{u,v} is a forest, and by the
Lemma 3.3 per (Br_l—{u,v}) £ 1 . Therefore,

per Br = per Br_1 + 1 =1y + 1 . This comp]etés the induction.

Hence, per G = k + 1 N - 2n + 2

4. Partial Results on Upper Bounds for the Permanent

of an ND (0,1) Matrix

This author has conjectured that (following our usual
notation) if G is the bigraph of an nxn ND (0,1) matrix,
with path decomposition G = PO U Pl U eee U Pk s, and
|[E(G)| = N , and if uy and v, are the end points of ,Pj
(j = 2,°-+,k), then per B,_; > per (BjQi - {uj,vj}):. It
follows that, if this inequality is true, then

per Bj-é 2 per Bj__l - 1 . Since per B1 always equals @ 2
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for G corresponding to ND (0,1) matrices, our conjecture

implies that
(1) per G £ 27D 4 q o p(e2n)

We can easily verify (1) in the case where n = 1,2,3 ,
or for k = 1,2,3 , or whenever N = 2n . We now define a
special subclass of the bigraphs corresponding to ND (0,1)

matrices:

Definition 4.1: Let G be the bigraph of an nxn ND

(0,1) matrix A . G 1is said to be of class Z 1if for every
divalent vertex v , the contraction G' of G by v does

not correspond to an ND matrix A’

This definition, together with Theorems I1.4.9 and
IT.4.10, implies that a bigraph G of class Z has the
property that every divalent vertex v is adjacent to a
divalent vertex w and that G-{v,w} corresponds to an ND
matrix. Bigraphs of class Z appear to be rather difficult
to construct, and we feel these graphs have many special
properties. It is hoped that an intensive study of class Z
will settle our conjecture, either by providing a counter
example, or by succeeding in proving the conjecture true for
bigraphs of class Z . Theorem 4.1 tells us that if (1) is
true for bigraphs of class Z , then it is true for any

bigraph G corresponding to an nxn ND (0,1) matrix.
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The following example shows that class. Z s not

empty:

Theorem 4.1: Let G be the biéraph of an nxn ND (0,1)

matrix A . Suppose that any bigraph of class Z satisfies

inéqua11ty (1), above. Then G satisfies (1).

Proof: If n =1 or 2 , then (1) is trivially
satisfied. We may suppose, therefore, that n 23 . We use
induction on n . If n = 3 , the theorem is clearly true.
Suppose thé'theorem to be true fof any bigraph corresponding
to an (n-1)x(n-1) ND (0,1) matrix. If G 'is of class Z ,
our proof is complete. If G is not of class Z , then by
Theoreﬁs I1.4.9 and I1.4.10, there is a divalent vertex v
such that the contraction G' of G with respect to v

corresponds to an (n-1)x(n-1) ND (0,1) matrix A' , with
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per A = per A' . Notice that G6' has two less edges than

G . Now G' satisfies the induction hypothesis, so:

per A = per A' s 2{(N72)=2(n=1)) g . p(Nm2n)

5. The Problem of Characterizing ND Matrices

The problem of finding a useful characterization of ND
matrices (equivalently, of their bigraphs) in terms of some
easily observed or easily calculated properties, appears to
be very difficult. As far as this author is aware, no such
result exists at present. The following example shows a
bigraph G which satisfies Theorem II.4.15 but has a remov-
able edge. This demonstrates that Theorem II.4.15 fails to

characterize the bigfaphs of ND matrices.

31Q o2

o
5'

Mo
(A%
I
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If we let
PO‘J P1 = 11'22'33"'1
P2 = 14'42
P3 = 35'54'

then we can write G = P, UP, LIPZ‘L)P3 , which satisfies
the necessary conditions stated in Theorem I11.4.15; but the

edges . 14" and 32' are clearly removable.

During the study of this problem, the following question
arose., Although 2-connectivity does not characterize the
bigraphs of FI matrices, are the bigraphs of ND matrices
characterized by being mihima]]y 2~conneﬁted? By “minimally
2-connected", of course, we mean that the removal of any edge
would destroy the property of being 2-connected. The example
of G  on page 82 provides a negative answer to the question,
and in this author's opinion, reflects the difficulty of the
problem of characterizing bigraphs of ND matrices. G _corre-
sponds to an FI matrix because we can write

G = PO U Pl LJleJ P3 U P, if we define

4
PoU P, = 11'22'33'44'55'66'7711
P, = 3887
P, = 79'94
P = 2(10)'(10)5"
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i it 2 10!
O O O =)
()2"
8 8!
VARe, O O O3
G: Q3!
Q4
9! 9
7O O O =0 4!
05
O- O O 'e]
6! 6 5! 10

To see that G corresponds to an ND matrix, first
observe that every edge except 77' is incident to a divalent
vertex. Next we show that 9-77' does not correspond to an
FI matrix. If U= {5,6,7,9,10} and Vv = {1',2',3',7',8"'} ,
then U UV 1is an independent set of vertices of the (10,10)
bigraph 6G-77', with |U| + |V] = 10 . We conclude that G

is ND, but observe that G-77' is 2-connected.

Notice that if G s the bigraph of an nxn FI (0,1)
matrix A , and if G has a removable edge, then there

exists a good path decomposition G = P0 U PllJ cee U Pk .
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in which some Pi (i = 2,++9,k) has length one. In view of
this observation, perhaps the_investigation of the various
good path decompositions pertaining to;a pafticu1ar G
corresponding to‘an FI matrix woﬁia yier khow]édgeMTEading

to a characterization of the bigraphs of ND matrices.
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IV. SUMMARY

In this chapter we briefly discuss those prob1ems which
have been settled only partially in the preceding pages, and
we consider some future research projects which have arisen

out of this dissertation.

1. Some Unsettled Issues

As far as we are aware no good upper-bound estimate,
in terms of n and N alone, is known for the permanent of
an nxn ND (0,1) matrix having N positive entries. The
conjecture of Chapter III, Section 4, would provide suéh an
estimate if it were proven true for ND matrices having bigraphs
of class Z . On the basis of some recent preliminary inves-
tigations, it appears that problems involving permanent esti-
mates for bigraphs of class Z do not adapt very well to
induction-type arguments. On the other hand, these studies
indicate that there is hope that bigraphs of class Z have a
particularly simple structure. In this regard, we feel that
the most promising approach to the problem might be a unique-
ness type of argument, i.e., an attempt to construct a small
collection of bigraphs of class Z which, we would then hope
to show, are the only members of class Z . In any event,
this author intends to subject the bigraphs of class Z to

an intensive study.
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Another unsettled problem, which appears to be a very
difficult one, is the matter of finding a simple characteri-
zation for ND matrices and theirrb‘igraphs° Para11eiing‘a
remark in Chapter III, Section 5, one may observe that if G
is the bigraph of an nxn (0,1) matrix A , then G has a
removable edge if and only if there is some good pathfdecom-
position G =,POlJ PllJ oo LlPk s With some Pi having
length 1 , where 2 <i <k . This <s, in fact, atcharac-
terization of the bigraph of an ND matrix, buf not a very good
one because little is known about the é1ass D of gdod path
decompositions for G . Perhaps an 1nvest1gation‘of'é1dss D
would be a fruitful new method for attacking the characteri-
zation problem. A1l that seems to be known at present about
this class is the result of Theorem III.2.1, which concerns
the degree of G . However, some interesting questfdns arise
Tmmediately: Do there exist any nétura1 relations on the "
class D ? Can we find some sort of transformation on E(G)
or V(G) which would map one good path decomposition into
another? We hope to find some gratifying answers to these

and other questions in the future.

2. A Connection Between the ND Concept andréaProb1em

of Erdas,kHajnal, and Moon

The notation of a bigraph corresponding to an nxn ND
(0,1) matrix is closely related to a graph-theoretical problem

of Erdos, Hajnal, and Moon [5]. We state here the weaker form
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of their theory. The authors consider a graph G having n
vertices. G is said to have property (n,p), where

2 <p<<n, if G does not contain the complete graph Kp »
but the graph G' formed by adding any new edge to G,
does. One of the consequences of their results is that a
graph having property (n,p) must have at least n(p—Z)—(pé])
edges. They offer an extension of their theory to bigraphs

as follows:

If G is an (n,m) bigraph, and if 1 £k £n and
1<h<m, then G 1is said to have property (n,m,k,h) if
G does not contain the complete bigraph Kk'h , but the
bigraph G' formed by adding any new edge (with different
colored end points) fo G , does. Erdos, et al, conjectured
that a bigraph having property (n,m,k,h) must contain at

lTeast (k-1)m+(h=-1)n+(k-1)(h-1) edges. Bollobas [3] verified

that their conjecture was correct.

We now extend the original notion of Erdds, et al, to

bigraphs in a slightly different manner.

Definition 2.1: Let G be an (n,m) bigraph, and

suppose 1p is an integer such that 2 £ p Sm+ n . Then
G is said to be of type (n,m,p) if for any integers k and

h , with 1T Sk<n, 1 =h=m, and k +h =1p ,
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G does not contain the complete subgraph Kk .- but the

addition of any new edge (with different colored end points)

L. .2

to G destroys this property.

We now make the definitions and observations necessary

to Tink the above notions with the ND concept.

Definition 2.2: Let G be an (n,m) bigraph. Then

G , the complement of G 1is the bigraph defined'asAfol1ows:

(1) V(G) = v(6) = S UT

(2) 1If veS and we T, then vw e E(G) 1if and
only if vw ¢ E(G)

We observe that, if UCS and Vc T, with |U] =k
and |V|-=h , then [UUV] cG 1is the complete bigraph
K if and only if U UV s an independent set of V(G).

It is now clear that if G is the bigraph of an nxn ND
(0,1) matrix A , then G has property (n,n,n). (The con-
verse is also true, with a suitable adjustment of the termi-
nology.) For this special case, Theorem II1I1.2.2 te]]s us

that G must have at least n2~(3n—3) edges.

The determination of the minimal number of édges in a
bigraph of type (n,m,p) might be an interésting future research
problem. It also appears that the above observgtjons indicate

an interesting generalization of the FI concept.
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articulation point, 15

bigraph, 18
(m,n) bigraph, 18

chain, 20

chainable, 20

closed path, 14

complement of a graph, 87
complete bigraph Km,n , 18
complete graph Kn s 17
component, 15

connected graph, 14
contraction of a graph, 4]
covering set of edges, 16

cycle, 14

degree of an FI matrix, 66
diagonal, 20

diagonal product, 20
digraph, 23

directed path, 23

distance, between
vertices, 14

divalent, 12
doubly stochastic, 2

doubly stochastic
pattern, 20

edge, 11

edge graph, 17

edges of attachment, 40
Eij , 10

~end points, of an edge, 12

end points, of a path, 14
extension of a 1-factor, 16

FI, 2
forest, 19
fully indecomposable, 2

good path decomposition, 53
graph, 11

incident, 12

independent set of edges, 16
independent set of vertices,
initial vertex, 23

interior vertices, 14
irreducible matrix, 2

k-factor, 16

lenath, of a path, 14
loop, 11
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27

maximal connected subgraph, 15

monovalent, 12
multiple edges, 11

ND, 5

nearly decomposable, 4
nearly reducible, 6
node, 12

partly decomposable, 2
path, 14
path decomposition, 33




pendant edge, 74
p-equivalent, 2
permanent, of a matrix, 3
permutation matrix, 1
positive diagonal, 20
proper subgraph, 13
p-similar, 2

reducible, 2

reqgular graph, 15

removable edge, 41
removable positive entry, 4

simple path, 14
spanning subgraph, 13
strongly connected, 23
subgraoh, 13

subgraph induced by an
edge subset, 13

subgraph induced by a
vertex subset, 13

support, for a graph, 26
support, for a matrix, 21

terminal vertex, 23
tree, 19
trivalent, 12

valence, 12
val(x), 12
vertex, 11
vertex graph, 17
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